Corticotropin-Releasing Factor and Urocortin I Modulate Excitatory Glutamatergic Synaptic Transmission
نویسندگان
چکیده
منابع مشابه
Corticotropin-releasing factor and Urocortin I modulate excitatory glutamatergic synaptic transmission.
Corticotropin-releasing factor (CRF)-related peptides serve as hormones and neuromodulators of the stress response and play a role in affective disorders. These peptides are known to alter complex behaviors and neuronal properties, but their receptor-mediated effects at CNS synapses are not well described. Here we show that excitatory glutamatergic transmission is modulated by two endogenous CR...
متن کاملUrocortin, corticotropin releasing factor-2 receptors and energy balance.
Although there is considerable information regarding the role of brain CRF in energy balance, relatively little is known about the role of urocortin (UCN), which is an equally potent anorexic agent. Therefore, the effects of intracerebroventricular (icv) administration of UCN (0.01-1 nmol/day) on food intake and body weight were assessed over a period of 13 days and compared with data from CRF-...
متن کاملRegulation of gonadotropins by corticotropin-releasing factor and urocortin
While stress activates the hypothalamic-pituitary-adrenal (HPA) axis, it suppresses the hypothalamic-pituitary-gonadal (HPG) axis. Corticotropin-releasing factor (CRF) is a major regulatory peptide in the HPA axis during stress. Urocortin 1 (Ucn1), a member of the CRF family of peptides, has a variety of physiological functions and both CRF and Ucn1 contribute to the stress response via G prote...
متن کاملNeuropeptide Y and corticotropin-releasing factor bi-directionally modulate inhibitory synaptic transmission in the bed nucleus of the stria terminalis.
Neuropeptide Y (NPY) and corticotropin-releasing factor (CRF) have opposing effects on stress and anxiety. Both can modify synaptic activity through their binding to NPY receptors (YRs) and CRF receptors (CRFRs) respectively. The bed nucleus of the stria terminalis (BNST) is a brain region with enriched expression of both NPY and YRs and CRF and CRFRs. A component of the "extended amygdala", th...
متن کاملCLC-3 Channels Modulate Excitatory Synaptic Transmission in Hippocampal Neurons
It is well established that ligand-gated chloride flux across the plasma membrane modulates neuronal excitability. We find that a voltage-dependent Cl(-) conductance increases neuronal excitability in immature rodents as well, enhancing the time course of NMDA receptor-mediated miniature excitatory postsynaptic potentials (mEPSPs). This Cl(-) conductance is activated by CaMKII, is electrophysio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neuroscience
سال: 2004
ISSN: 0270-6474,1529-2401
DOI: 10.1523/jneurosci.5531-03.2004